Experimental studies on flow control​

Experiments on LFC: Flat-plate with suction insert​

  • Closed-circuit, low-speed wind tunnel​
  • Wind speed up to 55 m/s​
  • Infra-red thermography technique to determine transition location ​
Illustration of flat plate experimental set up

Key results:

  • Boundary layer suction decay TS instabilities, and delay the laminar-to-turbulent transition, extending the laminar flow region on flat-plate
  • With increasing in suction, the transition location on the flat-plate moves downstream
  • Optimal local suction is around |𝐶𝑞|>0.5×10−3〖|C〗_q |>0.5×10^(-3)
  • for |𝐶𝑞|>1×10−3 or 〖|C〗_q |>1×10^(-3 )transition location converged asymptotically
diagrams

Laminar-to-turbulent transition (without suction)
Re = 3 - 6 million

Red and blue animated gif

Laminar-to-turbulent transition as function of suction magnitute, Re = 7 million

Red and blue animated gif

Read more:​

Grappadelli, M. C., Scholz, P., Radespiel, R., and Badrya, C., Experimental investigations of boundary layer transition on a flat plate with suction, AIAA Scitech 2021 Forum, January 2021. DOI: 10.2514/6.2021-1452 ​

Experiments on LFC: HLFC wing with suction insert

  • HLFC wing with suction insert on the upper surface
  • Wing characteristics (i.e.: laminar bucket, pressure curve)
  • Drag reduction due to BL suction
  • Laminar-to-turbulent transition line
  • Wind speed: 30- 55 m/s; 0.5 m chord; 𝑅𝑒=0.1−1.6 𝑚𝑖𝑙𝑙𝑖𝑜𝑛Re=0.1-1.6 million
  • Drag reduction up to 30% due to BLS

Illustration of HLFC wing experimental set-up ​

diagram

HLFC wing shape with BLS ​

diagram

 

HLFC wing characteristics at Re = 1 million

diagram

Read more:​

Grappadelli, M. C., Sudhi, A., Radiespiel, R., and Badrya, C., Experimental Study of a Wing with Hybrid Laminar Flow Control Application, AIAA Aviation Forum 2022, Chicago, 6/27 -7/1/2022​

Experiments on LFC: A320 Fin​

  • Concept verification:​
    • large scale WT demonstration on relevant aircraft components​
    • A320-like Vertical Tail Plane (VTP) in DNW-LLF with TSSD suction nose​
    • Leading edge sweep 40.38°,  Re = 22  106   (Transition w/o suction at x/c = 0.03 results from CFI)​
  • BLS necessary at high sweep angles and Reynolds numbers ​
  • Tailored Skin Single Duct (TSSD) concept (DLR): Variable suction​
  • ALVAR project (cleansky project in collaboration with DLR and TUBS)​

Fin A320 with suction insert model​

Model of an airplane fin

TSSD suction layout​

DIAGRAM

Key results:​

  • Laminar region extended to ~40% ​
  • Turbulent wedge related to indentation near leading edge​
  • Laminar region highlighted by green dot vanishes when lowering plenum pressure​

Infrared measurements of transition location

algorithm

 

six diagrams

Read more:​

  1. Barklage, A., Römer, U., Bertram, A., Bekemeyer, P., Himisch, J., Radespiel, R., and Badrya, C., Analysis and Uncertainty Quantification of a Hybrid Laminar Flow Control System. AIAA Journal, Volume 60, https://doi.org/10.2514/1.J061745

  2. Barklage, A., Römer, U., Seitz, A., Horn, M., Radespiel, R., Scholz, P., Badrya, C., Validation of Suction Velocity Analysis for Active Laminar Flow Control with Uncertainties, Journal Article, AIAA Journal, p.1, https://arc.aiaa.org/doi/abs/10.2514/1.J062374

  3. Seitz, A., Horn, M., Barklage, A., Scholz, P., Badrya, C. and, Radespiel, R., Wind Tunnel Verification of Laminar  Boundary Layer Control TSSD Concept, AIAA Aviation Forum 2022, Chicago, 6/27 -7/1/2022.